
Eclipse Attacks on Bitcoin’s Peer-to-Peer Network ∗

Ethan Heilman∗ Alison Kendler∗ Aviv Zohar† Sharon Goldberg∗
∗Boston University †Hebrew University/MSR Israel

Abstract
We present eclipse attacks on bitcoin’s peer-to-peer net-
work. Our attack allows an adversary controlling a suffi-
cient number of IP addresses to monopolize all connec-
tions to and from a victim bitcoin node. The attacker can
then exploit the victim for attacks on bitcoin’s mining
and consensus system, including N-confirmation double
spending, selfish mining, and adversarial forks in the
blockchain. We take a detailed look at bitcoin’s peer-
to-peer network, and quantify the resources involved in
our attack via probabilistic analysis, Monte Carlo simu-
lations, measurements and experiments with live bitcoin
nodes. Finally, we present countermeasures, inspired by
botnet architectures, that are designed to raise the bar for
eclipse attacks while preserving the openness and decen-
tralization of bitcoin’s current network architecture.

1 Introduction

While cryptocurrency has been studied since the
1980s [22, 25, 28], bitcoin is the first to see widespread
adoption.A key reason for bitcoin’s success is its baked-
in decentralization. Instead of using a central bank to
regulate currency, bitcoin uses a decentralized network
of nodes that use computational proofs-of-work to reach
consensus on a distributed public ledger of transactions,
aka., the blockchain. Satoshi Nakamoto [52] argues that
bitcoin is secure against attackers that seek to shift the
blockchain to an inconsistent/incorrect state, as long as
these attackers control less than half of the computa-
tional power in the network. But underlying this security
analysis is the crucial assumption of perfect information;
namely, that all members of the bitcoin ecosystem can
observe the proofs-of-work done by their peers.
∗This is the full version of a paper that ap-

peared at 24th USENIX Security Symposium,
Washington, DC., August 2015. First posted
March 20, 2015; updated July 2, 2015.

While the last few years have seen extensive research
into the security of bitcoin’s computational proof-of-
work protocol e.g., [14, 29, 36, 37, 45, 49, 50, 52, 58, 60],
less attention has been paid to the peer-to-peer network
used to broadcast information between bitcoin nodes (see
Section 8). The bitcoin peer-to-peer network, which
is bundled into the core bitcoind implementation, aka.,
the Satoshi client, is designed to be open, decentralized,
and independent of a public-key infrastructure. As such,
cryptographic authentication between peers is not used,
and nodes are identified by their IP addresses (Section 2).
Each node uses a randomized protocol to select eight
peers with which it forms long-lived outgoing connec-
tions, and to propagate and store addresses of other po-
tential peers in the network. Nodes with public IPs also
accept up to 117 unsolicited incoming connections from
any IP address. Nodes exchange views of the state of the
blockchain with their incoming and outgoing peers.

Eclipse attacks. This openness, however, also makes it
possible for adversarial nodes to join and attack the peer-
to-peer network. In this paper, we present and quantify
the resources required for eclipse attacks on nodes with
public IPs running bitcoind version 0.9.3. In an eclipse
attack [27, 61, 62], the attacker monopolizes all of the
victim’s incoming and outgoing connections, thus iso-
lating the victim from the rest of its peers in the net-
work. The attacker can then filter the victim’s view
of the blockchain, force the victim to waste compute
power on obsolete views of the blockchain, or coopt
the victim’s compute power for its own nefarious pur-
poses (Section 1.1). We present off-path attacks, where
the attacker controls endhosts, but not key network in-
frastructure between the victim and the rest of the bit-
coin network. Our attack involves rapidly and repeatedly
forming unsolicited incoming connections to the victim
from a set of endhosts at attacker-controlled IP addresses,
sending bogus network information, and waiting until the
victim restarts (Section 3). With high probability, the
victim then forms all eight of its outgoing connections to

1

attacker-controlled addresses, and the attacker also mo-
nopolizes the victim’s 117 incoming connections.

Our eclipse attack uses extremely low-rate TCP con-
nections, so the main challenge for the attacker is to
obtain a sufficient number of IP addresses (Section 4).
We consider two attack types: (1) infrastructure attacks,
modeling the threat of an ISP, company, or nation-state
that holds several contiguous IP address blocks and seeks
to subvert bitcoin by attacking its peer-to-peer network,
and (2) botnet attacks, launched by bots with addresses in
diverse IP address ranges. We use probabilistic analysis,
(Section 4) measurements (Section 5), and experiments
on our own live bitcoin nodes (Section 6) to find that
while botnet attacks require far fewer IP addresses, there
are hundreds of organizations that have sufficient IP re-
sources to launch eclipse attacks (Section 4.2.1). For ex-
ample, we show how an infrastructure attacker with 32
distinct /24 IP address blocks (8192 address total), or a
botnet of 4600 bots, can always eclipse a victim with at
least 85% probability; this is independent of the number
of nodes in the network. Moreover, 400 bots sufficed in
tests on our live bitcoin nodes. To put this in context,
if 8192 attack nodes joined today’s network (containing
≈ 7200 public-IP nodes [4]) and honestly followed the
peer-to-peer protocol, they could eclipse a target with
probability about (8192

7200+8192)
8 = 0.6%.

Our attack is only for nodes with public IPs; nodes
with private IPs may be affected if all of their outgoing
connections are to eclipsed public-IP nodes.

Countermeasures. Large miners, merchant clients
and online wallets have been known to modify bit-
coin’s networking code to reduce the risk of network-
based attacks. Two countermeasures are typically rec-
ommended [3]: (1) disabling incoming connections, and
(2) choosing ‘specific’ outgoing connections to well-
connected peers or known miners (i.e., use whitelists).
However, there are several problems with scaling this to
the full bitcoin network. First, if incoming connections
are banned, how do new nodes join the network? Sec-
ond, how does one decide which ‘specific’ peers to con-
nect to? Should bitcoin nodes form a private network?
If so, how do they ensure compute power is sufficiently
decentralized to prevent mining attacks?

Indeed, if bitcoin is to live up to its promise as an open
and decentralized cryptocurrency, we believe its peer-to-
peer network should be open and decentralized as well.
Thus, our next contribution is a set of countermeasures
that preserve openness by allowing unsolicited incom-
ing connections, while raising the bar for eclipse attacks
(Section 7). Today, an attacker with enough addresses
can eclipse any victim that accepts incoming connections
and then restarts. Our countermeasures ensure that, with
high probability, if a victim stores enough legitimate ad-
dresses that accept incoming connections, then the vic-

tim be cannot eclipsed regardless of the number of IP
addresses the attacker controls. Our countermeasures 1,
2, and 6 have been deployed in bitcoind v0.10.1; we also
developed a patch [40] with Countermeasures 3,4.

1.1 Implications of eclipse attacks

Apart from disrupting the bitcoin network or selectively
filtering a victim’s view of the blockchain, eclipse attacks
are a useful building block for other attacks.

Engineering block races. A block race occurs when
two miners discover blocks at the same time; one block
will become part of the blockchain, while the other “or-
phan block” will be ignored, yielding no mining rewards
for the miner that discovered it. An attacker that eclipses
many miners can engineer block races by hording blocks
discovered by eclipsed miners, and releasing blocks to
both the eclipsed and non-eclipsed miners once a com-
peting block has been found. Thus, the eclipsed miners
waste effort on orphan blocks.

Splitting mining power. Eclipsing an x-fraction of
miners eliminates their mining power from the rest of
the network, making it easier to launch mining attacks
(e.g., the 51% attack [52]). To hide the change in min-
ing power under natural variations [19], miners could be
eclipsed gradually or intermittently.

Selfish mining. With selfish mining [14,29,37,60], the
attacker strategically withholds blocks to win more than
its fair share of mining rewards. The attack’s success
is parameterized by two values: α , the ratio of mining
power controlled by the attacker, and γ , the ratio of hon-
est mining power that will mine on the attacker’s blocks
during a block race. If γ is large, then α can be small. By
eclipsing miners, the attacker increases γ , and thus de-
creases α so that selfish mining is easier. To do this, the
attacker drops any blocks discovered by eclipsed miners
that compete with the blocks discovered by the selfish
miners. Next, the attacker increases γ by feeding only
the selfish miner’s view of the blockchain to the eclipsed
miner; this coopts the eclipsed miner’s compute power,
using it to mine on the selfish-miner’s blockchain.

Attacks on miners can harm the entire bitcoin ecosys-
tem; mining pools are also vulnerable if their gateways
to the public bitcoin network can be eclipsed. Eclipsing
can also be used for double-spend attacks on non-miners,
where the attacker spends some bitcoins multiple times:

0-confirmation double spend. In a 0-confirmation
transaction, a customer pays a transaction to a mer-
chant who releases goods to the customer before seeing
a block confirmation i.e., seeing the transaction in the
blockchain [18]. These transactions are used when it is
inappropriate to wait the 5-10 minutes typically needed

2

to for a block confirmation [20], e.g., in retail point-of-
sale systems like BitPay [5], or online gambling sites like
Betcoin [57]. To launch a double-spend attack against
the merchant [46], the attacker eclipses the merchant’s
bitcoin node, sends the merchant a transaction T for
goods, and sends transaction T ′ double-spending those
bitcoins to the rest of the network. The merchant releases
the goods to the attacker, but since the attacker controls
all of the merchant’s connections, the merchant cannot
tell the rest of the network about T , which meanwhile
confirms T ′. The attacker thus obtains the goods with-
out paying. 0-confirmation double-spends have occurred
in the wild [57]. This attack is as effective as a Finney
attack [39], but uses eclipsing instead of mining power.

N-confirmation double spend. If the attacker has
eclipsed an x-fraction of miners, it can also launch
N-confirmation double-spending attacks on an eclipsed
merchant. In an N-confirmation transaction, a merchant
releases goods only after the transaction is confirmed in a
block of depth N−1 in the blockchain [18]. The attacker
sends its transaction to the eclipsed miners, who incor-
porate it into their (obsolete) view of the blockchain.
The attacker then shows this view of blockchain to the
eclipsed merchant, receives the goods, and sends both the
merchant and eclipsed miners the (non-obsolete) view of
blockchain from the non-eclipsed miners. The eclipsed
miners’ blockchain is orphaned, and the attacker ob-
tains goods without paying. This is similar to an attack
launched by a mining pool [10], but our attacker eclipses
miners instead of using his own mining power.

Other attacks exist, e.g., a transaction hiding attack on
nodes running in SPV mode [16].

2 Bitcoin’s Peer-to-Peer Network

We now describe bitcoin’s peer-to-peer network, based
on bitcoind version 0.9.3, the most current release from
9/27/2014 to 2/16/2015, whose networking code was
largely unchanged since 2013. This client was origi-
nally written by Satoshi Nakamoto, and has near univer-
sal market share for public-IP nodes (97% of public-IP
nodes according to Bitnode.io on 2/11/2015 [4]).

Peers in the bitcoin network are identified by their IP
addresses. A node with a public IP can initiate up to
eight outgoing connections with other bitcoin nodes, and
accept up to 117 incoming connections.1 A node with a
private IP only initiates eight outgoing connections. Con-
nections are over TCP. Nodes only propagate and store
public IPs; a node can determine if its peer has a public
IP by comparing the IP packet header with the bitcoin
VERSION message. A node can also connect via Tor; we

1This is a configurable. Our analysis only assumes that nodes have
8 outgoing connections, which was confirmed by [51]’s measurements.

do not study this, see [16, 17] instead. We now describe
how nodes propagate and store network information, and
how they select outgoing connections.

2.1 Propagating network information
Network information propagates through the bitcoin net-
work via DNS seeders and ADDR messages.

DNS seeders. A DNS seeder is a server that re-
sponds to DNS queries from bitcoin nodes with a (not
cryptographically-authenticated) list of IP addresses for
bitcoin nodes. The size of the list is limited by constraints
on DNS; it turns that the maximum possible number of
IP addresses that can be returned by a single DNS query
is around 4000 [41]. The seeder obtains these addresses
by periodically crawling the bitcoin network. The bitcoin
network has six seeders which are queried in two cases
only. The first when a new node joins the network for
the first time; it tries to connect to the seeders to get a list
of active IPs, and otherwise fails over to a hardcoded list
of about 600 IP addresses. The second is when an exist-
ing node restarts and reconnects to new peers; here, the
seeder is queried only if 11 seconds have elapsed since
the node began attempting to establish connections and
the node has less than two outgoing connections.

ADDR messages. ADDR messages, containing up to
1000 IP address and their timestamps, are used to obtain
network information from peers. If more than 1000 ad-
dresses are sent in a ADDR message, the peer who sent the
message is blacklisted. Nodes accept unsolicited ADDR

messages. An ADDR message is solicited only upon es-
tablishing a outgoing connection with a peer; the peer
responds with up to three ADDR message each containing
up to 1000 addresses randomly selected from its tables.2

Nodes push ADDR messages to peers in two cases.
Each day, a node sends its own IP address in a ADDR

message to each peer. Also, when a node receives an
ADDR message with no more than 10 addresses, it for-
wards the ADDR message to two randomly-selected con-
nected peers.3 To choose these peers, the node takes the
hash of each connected peer’s IP address and a secret
nonce associated with the day, selects the peers with the
lexicographically first and second hash values. Finally,
to prevent stale ADDR messages from endlessly propagat-
ing, each node keeps a known list of the addresses it has
sent to or learned from each of its connected peers, and
never sends address on the known list to its peer. The
known lists are flushed daily.

2The peer sends a total of n randomly selected addresses from the
peer’s tried and new tables, where n is a random number between x
and 2500, where x is 23% of the addresses the peer has stored.

3Actually, if the ADDR message contains addresses that are un-
routable for the peer (e.g., a peer with IPv4 address gets an IPv6 ad-
dress, it will forward the ADDR message to one peer only.

3

2.2 Storing network information
Public IPs are stored in a node’s tried and new tables.
Tables are stored on disk and persist when a node restarts.

The tried table. The tried table consists of 64 buck-
ets, each of which can store up to 64 unique addresses
for peers to whom the node has successfully established
an incoming or outgoing connection. Along with each
stored peer’s address, the node keeps the timestamp for
the most recent successful connection to this peer.

Each peer’s address is mapped to a bucket in tried by
taking the hash of the peer’s (a) IP address and (b) group,
where the group defined is the /16 IPv4 prefix containing
the peer’s IP address.4A bucket is selected as follows:

SK = random value chosen when node is born.

IP = the peer’s IP address and port number.

Group = the peer’s group

i = Hash(SK, IP) % 4

Bucket = Hash(SK, Group, i) % 64

return Bucket

Thus, every IP address maps to a single bucket in tried,
and each group maps to up to four buckets.

When a node successfully connects to a peer, the
peer’s address is inserted into the appropriate tried

bucket. If the bucket is full (i.e., contains 64 addresses),
then bitcoin eviction is used: four addresses are ran-
domly selected from the bucket, and the oldest is (1)
replaced by the new peer’s address in tried, and then
(2) inserted into the new table. If the peer’s address is
already present in the bucket, the timestamp associated
with the peer’s address is updated. The timestamp is
also updated when an actively connected peer sends a
VERSION, ADDR, INVENTORY, GETDATA or PING message
and more than 20 minutes elapsed since the last update.

The new table. The new table consists of 256 buck-
ets, each of which can hold up 64 addresses for peers
to whom the node has not yet initiated a successful con-
nection. A node populates the new table with informa-
tion learned from the DNS seeders, or from ADDR mes-
sages. Addresses in the new table also have an asso-
ciated timestamp; addresses learned from DNS seeders
are stamped with a random timestamp between 3 and 7
days old, while addresses learned from ADDR messages
are stamped with their timestamp from the ADDR mes-
sage plus two hours.

Every address a inserted in new belongs to (1) a group,
defined in our description of the tried table, and (2) a

4For IPv6 addresses matching prefix 2001:0470* (which is allo-
cated to Hurricane Electric), the group is the /36 IP prefix that contains
IPv6 address of the peer. For all other IPv6 addresses,the group is the
/32 IP prefix that contains IPv6 address of the peer. For OnionCat Tor
addresses, the group is the first 4 bits of the OnionCat address.

source group, the group the contains the IP address of
the connected peer or DNS seeder from which the node
learned address a. The bucket is selected as follows:

SK = random value chosen when node is born.

Group = /16 containing IP to be inserted.

Src_Group = /16 containing IP of peer sending IP.

i = Hash(SK, Src_Group, Group) % 32

Bucket = Hash(SK, Src_Group, i) % 256

return Bucket

Each (group, source group) pair hashes to a single new

bucket, while each group selects up to 32 buckets in new.
Each bucket holds unique addresses. If a bucket is full,
then a function called isTerrible is run over all 64 ad-
dresses in the bucket; if any one of the addresses is ter-
rible, in that it is (a) more than 30 days old, or (b) has
had too many failed connection attempts, then the terri-
ble address is evicted in favor of the new address; other-
wise, bitcoin eviction is used with the small change that
the evicted address is discarded. A single address can
map to multiple buckets if it is advertised by multiple
peers; because it is unnecessary for our attacks, we omit
description of the elaborate routine is used to insert du-
plicate addresses.

2.3 Selecting peers

New outgoing connections are selected if a node restarts
or if an outgoing connection is dropped by the network.
A bitcoin node never deliberately drops a connection, ex-
cept when a blacklisting condition is met (e.g., the peer
sends ADDR messages that are too large).

A node with ω ∈ [0,7] outgoing connections selects
the ω +1th connection as follows:

(1) Decide whether to select from tried or new, where

Pr[Select from tried] =

√
ρ(9−ω)

(ω +1)+
√

ρ(9−ω)
(1)

and ρ is the ratio between the number of addresses stored
in tried and the number of addresses stored in new. Fig-
ure 1 plots the relationship between p and ω for different
values of ρ . The address is more likely to be selected
from tried when there are few outgoing connections or
the tried table is large.

(2) Select a random address from the table, with a bias
towards addresses with fresher timestamps: (i) Choose
a random non-empty bucket in the table. (ii) Choose a
random position in that bucket. (ii) If there is an address
at that position, return the address with probability

p(r,τ) = min(1, 1.2r

1+τ
) (2)

4

Figure 1: Plot of Pr[Select from tried] vs. ω (the num-
ber of outgoing connections) for different values of ρ

(the ratio between the number of addresses in tried and
the number of addresses stored in new) per equation (1).

else, reject the address and return to (i). The acceptance
probability p(r,τ) is a function of r, the number of ad-
dresses that have been rejected so far, and τ , the dif-
ference between the address’s timestamp and the current
time in measured in ten minute increments.5

(3) Connect to the address. If connection fails, go to (1).

3 The Eclipse Attack

Our attack is for a victim with a public IP. Our attacker
(1) populates the tried table with addresses for its at-
tack nodes, and (2) overwrites addresses in the new ta-
ble with “trash” IP addresses that are not part of the
bitcoin network. The “trash” addresses are unallocated
(e.g., listed as “available” by [56]) or as “reserved for
future use” by [43] (e.g., 252.0.0.0/8). We fill new with
“trash” because, unlike attacker addresses, “trash” is not
a scarce resource. The attack continues until (3) the
victim node restarts and chooses new outgoing connec-
tions from the tried and new tables in its persistant stor-
age (Section 2.3). With high probability, the victim es-
tablishes all eight outgoing connections to attacker ad-
dresses; all eight addresses will be from tried, since the
victim cannot connect to the “trash” in new. Finally, the
attacker (5) occupies the victim’s remaining 117 incom-
ing connections. We now detail each step of our attack.

3.1 Populating tried and new

The attacker exploits the following to fill tried and new:
1. Addresses from unsolicited incoming connections

are stored in the tried table; thus, the attacker can in-
sert an address into the victim’s tried table simply by

5The algorithm also considers the number of failed connections to
this address; we omit this because it does not affect our analysis.

connecting to the victim from that address. Moreover,
the bitcoin eviction discipline means that the attacker’s
fresher addresses are likely to evict any older legitimate
addresses stored in the tried table (Section 2.2).

2. A node accepts unsolicited ADDR messages; these
addresses are inserted directly into the new table without
testing their connectivity (Section 2.2). Thus, when our
attacker connects to the victim from an adversarial ad-
dress, it can also send ADDR messages with 1000 “trash”
addresses. Eventually, the trash overwrites all legitimate
addresses in new. We use “trash” because we do not want
to waste our IP address resources on overwriting new.

3. Nodes only rarely solicit network information from
peers and DNS seeders (Section 2.1). Thus, while the at-
tacker overwrites the victim’s tried and new tables, the
victim almost never counteracts the flood of adversarial
information by querying legitimate peers or seeders.

3.2 Restarting the victim

Our attack requires the victim to restart so it can con-
nect to adversarial addresses. There are several reasons
why a bitcoin node could restart, including ISP outages,
power failures, and upgrades, failures or attacks on the
host OS; indeed, [16] found that a node with a public IP
has a 25% chance of going offline after 10 hours. An-
other predictable reason to restart is a software update;
on 1/10/2014, for example, bitnodes.io saw 942 nodes
running Satoshi client version 0.9.3, and by 29/12/2014,
that number had risen to 3018 nodes, corresponding to
over 2000 restarts. Since updating is often not optional,
especially when it corresponds to critical security issues;
2013 saw three such bitcoin upgrades, and the heartbleed
bug [53] caused one in 2014. Also, since the community
needs to be notified about an upgrade in advance, the at-
tacker could watch for notifications and then commence
its attack [2]. Restarts can also be deliberately elicited
via DDoS [47, 65], memory exhaustion [16], or packets-
of-death (which have been found for bitcoind [6,7]). The
bottom line is that the security of the peer-to-peer net-
work should not rely on 100% node uptime.

3.3 Selecting outgoing connections

Our attack succeeds if, upon restart, the victim makes
all its outgoing connections to attacker addresses. To
do this, we exploit the bias towards selecting addresses
with fresh timestamps from tried; by investing extra
time into the attack, our attacker ensures its addresses are
fresh, while all legitimate addresses become increasingly
stale. We analyze this with few simple assumptions:

1. An f -fraction of the addresses in the victim’s tried
table are controlled by the adversary and the remaining

5

1− f -fraction are legitimate. (Section 4 analyzes how
many addresses the adversary therefore must control.)
2. All addresses in new are “trash”; all connections to
addresses in new fail, and the victim is forced to connect
to addresses from tried (Section 2.3).
3. The attack proceeds in rounds, and repeats each round
until the moment that the victim restarts. During a single
round, the attacker connects to the victim from each of
its adversarial IP addresses. A round takes time τa, so all
adversarial addresses in tried are younger than τa.
4. An f ′-fraction addresses in tried are actively con-
nected to the victim before the victim restarts. The times-
tamps on these legitimate addresses are updated every 20
minute or more (Section 2.2). We assume these times-
tamps are fresh (i.e., τ = 0) when the victim restarts; this
is the worst case for the attacker.
5. The time invested in the attack τ` is the time elapsed
from the moment the adversary starts the attack, until
the victim restarts. If the victim did not obtain new le-
gitimate network information during of the attack, then,
excluding the f ′-fraction described above, the legitimate
addresses in tried are older than τ`.
Success probability. If the adversary owns an f -
fraction of the addresses in tried, the probability that
an adversarial address is accepted on the first try is
p(1,τa) · f where p(1,τa) is as in equation (2); here we
use the fact that the adversary’s addresses are no older
than τa, the length of the round. If r− 1 addresses were
rejected during this attempt to select an address from
tried, then the probability that an adversarial address
is accepted on the rth try is bounded by

p(r,τa) · f
r−1

∏
i=1

g(i, f , f ′,τa,τ`)

where

g(i, f , f ′,τa,τ`) = (1− p(i,τa)) · f +(1− p(i,0)) · f ′

+(1− p(i,τ`)) · (1− f − f ′)

is the probability that an address was rejected on the ith

try given that it was also rejected on the i−1th try. An
adversarial address is thus accepted with probability

q(f , f ′,τa,τ`) =
∞

∑
r=1

p(r,τa) · f
r−1

∏
i=1

g(i, f , f ′,τa,τ`)

(3)
and the victim is eclipsed if all eight outgoing connec-
tions are to adversarial addresses, which happens with
probability q(f , f ′,τa,τ`)

8. Figure 2 plots q(f , f ′,τa,τ`)
8

vs f for τa = 27 minutes and different choices of τ`;
we assume that f ′ = 8

64×64 , which corresponds to a full
tried table containing eight addresses that are actively
connected before the victim restarts.

Figure 2: Probability of eclipsing a node q(f , f ′,τa,τ`)
8

(equation (3)) vs f the fraction of adversarial addresses
in tried, for different values of time invested in the at-
tack τ`. Round length is τa = 27 minutes, and f ′= 8

64×64 .
The dotted line shows the probability of eclipsing a node
if random selection is used instead.

Random selection. Figure 2 also shows success proba-
bility if addresses were just selected uniformly at random
from each table. We do this by plotting f 8 vs f . Without
random selection, the adversary has a 90% success prob-
ability even if it only fills f = 72% of tried, as long as
it attacks for τ` = 48 hours with τa = 27 minute rounds.
With random selection, 90% success probability requires
f = 98.7% of tried to be attacker addresses.

3.4 Monopolizing the eclipsed victim

Figure 2 assumes that the victim has exactly eight out-
going connections; all we require in terms of incoming
connections is that the victim has a few open slots to ac-
cept incoming TCP connections from the attacker.

While it is often assumed that the number of TCP
connections a computer can make is limited by the OS
or the number of source ports, this applies only when
OS-provided TCP sockets are used; a dedicated attacker
can open an arbitrary number of TCP connections us-
ing a custom TCP stack. A custom TCP stack (see e.g.,
zmap [35]) requires minimal CPU and memory, and is
typically bottlenecked only by bandwidth, and the band-
width cost of our attack is minimal:

Attack connections. To fill the tried table, our
attacker repeatedly connects to the victim from each of
its addresses. Each connection consists of a TCP hand-
shake, bitcoin VERSION message, and then disconnec-
tion via TCP RST; this costs 371 bytes upstream and
377 bytes downstream. Some attack connections also
send one ADDR message containing 1000 addresses; these
ADDR messages cost 120087 bytes upstream and 437
bytes downstream including TCP ACKs.

Monopolizing connections. If that attack succeeds,

6

the victim has eight outgoing connections to the attack
nodes, and the attacker must occupy the victim’s remain-
ing incoming connections. To prevent others from con-
necting to the victim, these TCP connections could be
maintained for 30 days, at which point the victim’s ad-
dress is terrible and forgotten by the network. While
bitcoin supports block inventory requests and the send-
ing of blocks and transactions, this consumes significant
bandwidth; our attacker thus does not to respond to in-
ventory requests. As such, setting up each TCP connec-
tion costs 377 bytes upstream and 377 bytes downstream,
and is maintained by ping-pong packets and TCP ACKs
consuming 164 bytes every 80 minutes.

We experimentally confirmed that a bitcoin node will
accept all incoming connections from the same IP ad-
dress. (We presume this is done to allow multiple nodes
behind a NAT to connect to the same node.) Main-
taining the default 117 incoming TCP connections costs
164×117

80×60 ≈ 4 bytes per second, easily allowing one com-
puter to monopolize multiple victims at the same time.
As an aside, this also allows for connection starvation
attacks [32], where an attacker monopolizes all the in-
coming connections in the peer-to-peer network, making
it impossible for new nodes to connect to new peers.

4 How Many Attack Addresses?

Section 3.3 showed that the success of our attack depends
heavily on τ`, the time invested in the attack, and f , the
fraction of attacker addresses in the victim’s tried ta-
ble. We now use probabilistic analysis to determine how
many addresses the attacker must control for a given
value of f ; it’s important to remember, however, that
even if f is small, our attacker can still succeed by in-
creasing τ`. Recall from Section 2.2 that bitcoin is care-
ful to ensure that a node does not store too many IP
addresses from the same group (i.e., /16 IPv4 address
block). We therefore consider two attack variants:

Botnet attack (Section 4.1). The attacker holds several
IP addresses, each in a distinct group. This models at-
tacks by a botnet of hosts scattered in diverse IP address
blocks. Section 4.1.1 explains why many botnets have
enough IP address diversity for this attack.

Infrastructure attack (Section 4.2). The attacker con-
trols several IP address blocks, and can intercept bitcoin
traffic sent to any IP address in the block, i.e., the at-
tacker holds multiple sets of addresses in the same group.
This models a company or nation-state that seeks to un-
dermine bitcoin by attacking its network. Section 4.2.1
discusses organizations that can launch this attack.

We focus here on tried; Appendix B considers how to
send “trash”-filled ADDR messages that overwrite new.

Figure 3: Botnet attack: the expected number of ad-
dresses stored in tried for different scenarios vs the
number of addresses (bots) t. Values were computed
from equations (4), (7) and (8), and confirmed by Monte
Carlo simulations (with 100 trials/data point).

4.1 Botnet attack

The botnet attacker holds t addresses in distinct groups.
We model each address as hashing to a uniformly-
random bucket in tried, so the number of addresses
hashing to each bucket is binomally distributed6 as
B(t, 1

64). How many of the 64× 64 entries in tried

can the attacker occupy? We model various scenarios,
and plot results in Figure 3.

1. Initially empty. In the best case for the attacker, all
64 buckets are initially empty and the expected number
of adversarial addresses stored in the tried table is

64E[min(64,B(t, 1
64))] (4)

2. Bitcoin eviction. Now consider the worst case for the
attacker, where each bucket i is full of 64 legitimate ad-
dresses. These addresses, however, will be older than
all Ai distinct adversarial addresses that the adversary
attempts to insert into to bucket i.7 Since the bitcoin
eviction discipline requires each newly inserted address
to select four random addresses stored in the bucket and
to evict the oldest, if one of the four selected addresses
is a legitimate address (which will be older than all of
the adversary’s addresses), the legitimate address will be
overwritten by the adversarial addresses.

For a = 0....Ai, let Ya be the number of adversarial ad-
dresses actually stored in bucket i, given that the adver-
sary inserted a unique addresses into bucket i. Let Xa = 1
if the ath inserted address successfully overwrites a legit-
imate address, and Xa = 0 otherwise. Then,

E[Xa|Ya−1] = 1− (
Ya−1

64)4

6B(n, p) is a binomial distribution counting successes in a sequence
of n independent yes/no trials, each yielding ‘yes’ with probability p.

7Actually, the addresses of the nodes that are actively connected to
the victim are not necessarily older; we already accounted for these in
Section 3.3.

7

and it follows that

E[Ya|Ya−1] = Ya−1 +1− (
Ya−1

64)4 (5)
E[Y1] = 1 (6)

where (6) follows because the bucket is initially full of
legitimate addresses. We now have a recurrence relation
for E[Ya], which we can solve numerically. We find that
E[Ya] > 63 for a ≥ 101, so the adversary can expect to
overwrite 63 of the 64 legitimate addresses in the bucket
after inserting 101 unique addresses. The expected num-
ber of adversarial addresses in all buckets is thus

64
t

∑
a=1

E[Ya]Pr[B(t, 1
64) = a] (7)

3. Random eviction. We again consider the attacker’s
worst case, where each bucket is full of legitimate ad-
dresses, but now we assume that each inserted address
evicts a randomly-selected address. (This is not what bit-
coin does, but we analyze it for comparison.) Applying
Lemma A.1 (Appendix A) we find the expected number
of adversarial addresses in all buckets is

4096(1− (4095
4096)

t) (8)

4. Exploiting multiple rounds. Our eclipse attack pro-
ceeds in rounds; in each round the attacker repeatedly in-
serts each of his t addresses into the tried table. While
each address always maps to the same bucket in tried

in each round, bitcoin eviction maps each address to a
different slot in that bucket in every round. Thus, an ad-
versarial address that is not stored into its tried bucket
at the end of one round, might still be successfully stored
into that bucket in a future round. Thus far, this section
has only considered a single round. But, more addresses
can be stored in tried by repeating the attack for multi-
ple rounds. After sufficient rounds, the expected number
of addresses is given by equation (4), i.e., the attack per-
forms as in the best-case for the attacker!

4.1.1 Who can launch a botnet attack?

The ‘initially empty’ line in Figure 3 indicates that a bot-
net exploiting multiple rounds can completely fill tried
with≈ 6000 addresses. While such an attack cannot eas-
ily be launched from a legitimate cloud service (which
typically allocates < 20 addresses per tenant [1, 8, 9]),
botnets of this size and larger than this have attacked
bitcoin [45, 47, 65]; the Miner botnet, for example, had
29,000 hosts with public IPs [54]. While some botnet in-
festations concentrate in a few IP address ranges [63],
it is important to remember that our botnet attack re-
quires no more than≈ 6000 groups; many botnets are or-
ders of magnitude larger [59]. For example, the Walow-
dac botnet was mostly in ranges 58.x-100.x and 188.x-
233.x [63], which creates 42× 28 + 55× 28 = 24832

Figure 4: Infrastructure attack. E[Γ] (expected number
of non-empty buckets) in tried vs s (number of groups).

Figure 5: Infrastructure attack with s = 32 groups: the
expected number of addresses stored in tried for differ-
ent scenarios vs the number of addresses per group t. Re-
sults obtained by taking the product of equation (9) and
equation (16) or (17), and confirmed by Monte Carlo
simulations (100 trials/data point). The horizontal line
assumes all E[Γ] buckets per (9) are full.

groups. Randomly sampling from the list of hosts in
the Carna botnet [26] 5000 times, we find that 1250
bots gives on average 402 distinct groups, enough to at-
tack our live bitcoin nodes (Section 6). Furthermore, we
soon show in Figure 4 that an infrastructure attack with
s > 200 groups easily fills every bucket in tried; thus,
with s > 400 groups, the attack performs as in Figure 3,
even if many bots are in the same group. .

4.2 Infrastructure attack
The attacker holds addresses in s distinct groups. We de-
termine how much of tried can be filled by an attacker
controlling s groups s containing t IP addresses/group.
How many groups? We model the process of pop-
ulating tried (per Section 2.2) by supposing that four
independent hash functions map each of the s groups
to one of 64 buckets in tried. Thus, if Γ ∈ [0,64]
counts the number of non-empty buckets in tried, we
use Lemma A.1 to find that

E[Γ] = 64
(
1− (63

64)
4s)≈ (1− e−

4s
64) (9)

Figure 4 plots E[Γ]; we expect to fill 55.5 of 64 buckets
with s = 32, and all but one bucket with s > 67 groups.
How full is the tried table? Appendix C determines
the expected number of addresses stored per bucket for

8

Figure 6: Histogram of the number of organizations with
s groups. For the /24 data, we require t = 256 addresses
per group; for /23, we require t = 512.

the first three scenarios described in Section 4.1; the ex-
pected fraction E[f] of tried filled by adversarial ad-
dresses is plotted in in Figure 5. The horizontal line in
Figure 5 show what happens if each of E[Γ] buckets per
equation (9) is full of attack addresses.

The adversary’s task is easiest when all buckets are
initially empty, or when a sufficient number of rounds
are used; a single /24 address block of 256 addresses
suffices to fill each bucket when s = 32 grouips is used.
Moreover, as in Section 4.1, an attack that exploits mul-
tiple rounds performs as in the ‘initially empty’ scenario.
Concretely, with 32 groups of 256 addresses each (8192
addresses in total) an adversary can expect to fill about
f = 86% of the tried table after a sufficient number of
rounds. The attacker is almost as effective in the bitcoin-
eviction scenario with only one round; meanwhile, one
round is much less effective with random eviction.

4.2.1 Who can launch an infrastructure attack?

Which organizations have enough IP address resources
to launch infrastructure attacks? We compiled data
mapping IPv4 address allocation to organizations, using
CAIDA’s AS to organization dataset [23] and AS to pre-
fix dataset [24] from July 2014, supplementing our data
with information from the RIPE database [55]. We de-
termined how many groups (i.e., addresses in the same
/16 IPv4 address block) and addresses per group are al-
located to each organization; see Figure 6. There are 448
organizations with over s= 32 groups and at least t = 256
addresses per group; if these organizations invest τ` = 5
hours into an attack with a τa = 27-minute round, then
they eclipse the victim with probability greater than 80%.

National ISPs in various countries hold a sufficient
number of groups (s ≥ 32) for this purpose; for exam-
ple, in Sudan (Sudanese Mobile), Columbia (ETB), UAE
(Etisalat), Guatemala (Telgua), Tunisia (Tunisia Tele-
com), Saudi Arabia (Saudi Telecom Company) and Do-
minica (Cable and Wireless). The United States Depart-
ment of the Interior has enough groups (s = 35), as does
the S. Korean Ministry of Information and Communica-
tion (s = 41), as do hundreds of others.

oldest # Age of addresses (in days)
addr addr % live < 1 1−5 5−10 10−30 > 30
38 d* 243 28% 36 71 28 79 29
41 d* 162 28% 23 29 27 44 39
42 d* 244 19% 25 45 29 95 50
42 d* 195 23% 23 40 23 64 45
43 d* 219 20% 66 57 23 50 23
103 d 4096 8% 722 645 236 819 1674
127 d 4096 8% 90 290 328 897 2491
271 d 4096 8% 750 693 356 809 1488
240 d 4096 6% 419 445 32 79 3121
373 d 4096 5% 9 14 1 216 3856

Table 1: Age and churn of addresses in tried for our
nodes (marked with *) and donated peers files.

4.3 Summary: infrastructure or botnet?

Figures 5, 3 show that the botnet attack is far superior
to the infrastructure attack. Filling f = 98% of the vic-
tim’s tried table requires a 4600 node botnet (attack-
ing for a sufficient number of rounds, per equation (4)).
By contrast, an infrastructure attacker needs 16,000 ad-
dresses, consisting of s = 63 groups (equation (9)) with
t = 256 addresses per group. However, per Section 3.3,
if our attacker increases the time invested in the attack
τ`, it can be far less aggressive about filling tried. For
example, per Figure 2, attacking for τ` = 24 hours with
τa = 27 minute rounds, our success probability exceeds
85% with just f = 72%; in the worst case for the attacker,
this requires only 3000 bots, or an infrastructure attack of
s = 20 groups and t = 256 addresses per group (5120 ad-
dresses). The same attack (f = 72%, τa = 27 minutes)
running for just 4 hours still has > 55% success proba-
bility. To put this in context, if 3000 bots joined today’s
network (with < 7200 public-IP nodes [4]) and honestly
followed the peer-to-peer protocol, they could eclipse a
victim with probability ≈ (3000

7200+3000)
8 = 0.006%.

5 Measuring Live Bitcoin Nodes

We briefly consider how parameters affecting the success
of our eclipse attacks look on “typical” bitcoin nodes.
We thus instrumented five bitcoin nodes with public IPs
that we ran (continuously, without restarting) for 43 days
from 12/23/2014 to 2/4/2015. We also analyze several
peers files that others donated to us on 2/15/2015. Note
that there is evidence of wide variations in metrics for
nodes of different ages and in different regions [46]; as
such, our analysis (Section 3-4) and some of our experi-
ments (Section 6) focus on the attacker’s worst-case sce-
nario, where tables are initially full of fresh addresses.

Number of connections. Our attack requires the
victim to have available slots for incoming connections.
Figure 7 shows the number of connections over time for
one of our bitcoin nodes, broken out by connections to
public or private IPs. There are plenty of available slots;

9

while our node can accommodate 125 connections, we
never see more than 60 at a time. Similar measurements
in [17] indicate that 80% of bitcoin peers allow at least
40 incoming connections. Our node saw, on average, 9.9
connections to public IPs over the course of its lifetime;
of these, 8 correspond to outgoing connections, which
means we rarely see incoming connections from public
IPs. Results for our other nodes are similar.

Connection length. Because public bitcoin nodes
rarely drop outgoing connections to their peers (except
upon restart, network failure, or due to blacklisting, see
Section 2.3), many connections are fairly long lived.
When we sampled our nodes on 2/4/2015, across all of
our nodes, 17% of connections had lasted more than 15
days, and of these, 65.6% were to public IPs. On the
other hand, many bitcoin nodes restart frequently; we
saw that 43% of connections lasted less than two days
and of these, 97% were to nodes with private IPs. This
may explain why we see so few incoming connections
from public IPs; many public-IP nodes stick to their ma-
ture long-term peers, rather than our young-ish nodes.

Size of tried and new tables. In our worst case attack,
we supposed that the tried and new tables were com-
pletely full of fresh addresses. While our Bitcoin nodes’
new tables filled up quite quickly (99% within 48 hours),
Table 1 reveals that their tried tables were far from full
of fresh addresses. Even after 43 days, the tried ta-
bles for our nodes were no more than 300/4096 ≈ 8%
full. This likely follows because our nodes had very few
incoming connections from public IPs; thus, most ad-
dresses in tried result from successful outgoing con-
nections to public IPs (infrequently) drawn from new.

Freshness of tried. Even those few addresses in
tried are not especially fresh. Table 1 shows the age
distribution of the addresses in tried for our nodes and
from donated peers files. For our nodes, 17% of ad-
dresses were more than 30 days old, and 48% were more
than 10 days old; these addresses will therefore be less
preferred than the adversarial ones inserted during an
eclipse attack, even if the adversary does not invest much
time τ` in attacking the victim.

Churn. Table 1 also shows that a small fraction of
addresses in tried were online when we tried connect-
ing to them on 2/17/2015.8 This suggests further vul-
nerability to eclipse attacks, because if most legitimate
addresses in tried are offline when a victim resets, the
victim is likely to connect to an adversarial address.

8For consistency with the rest of this section, we tested our nodes
tables from 2/4/2015. We also repeated this test for tables taken from
our nodes on 2/17/2015, and the results did not deviate more than 6%
from those of Table 1.

Figure 7: (Top) Incoming + outgoing connections vs
time for one of our nodes. (Bottom) Number of addresses
in tried vs time for all our nodes.

6 Experiments

We now validate our analysis with experiments.
Methodology. In each of our experiments, the vic-
tim (bitcoind) node is on a virtual machine on the at-
tacking machine; we also instrument the victim’s code.
The victim node runs on the public bitcoin network (aka,
mainnet). The attacking machine can read all the vic-
tim’s packets to/from the public bitcoin network, and
can therefore forge TCP connections from arbitrary IP
addresses. To launch the attack, the attacking machine
forges TCP connections from each of its attacker ad-
dresses, making an incoming connection to the victim,
sending a VERSION message and sometimes also an ADDR
message (per Appendix B) and then disconnecting; the
attack connections, which are launched at regular inter-
vals, rarely occupy all of the victim’s available slots for
incoming connections. To avoid harming the public bit-
coin network, (1) we use “reserved for future use” [43]
IPs in 240.0.0.0/8-249.0.0.0/8 as attack addresses, and
252.0.0.0/8 as “trash” sent in ADDR messages, and (2) we
drop any ADDR messages the (polluted) victim attempts
to send to the public network.

At the end of the attack, we repeatedly restart the vic-
tim and see what outgoing connections it makes, drop-
ping connections to the “trash” addresses and forging
connections for the attacker addresses. If all 8 outgo-
ing connections are to attacker addresses, the attack suc-
ceeds, and otherwise it fails. Each experiment restarts the
victim 50 times, and reports the fraction of successes. At
each restart, we revert the victim’s tables to their state at
the end of the attack, and rewind the victim’s system time
to the moment the attack ended (to avoid dating times-
tamps in tried and new). We restart the victim 50 times
to measure the success rate of our (probabilistic) attack;
in a real attack, the victim would only restart once.
Initial conditions. We try various initial conditions:
1. Worst case. In the attacker’s worst-case scenario,
the victim initially has tried and new tables that are

10

Attacker resources Experiment Predicted
grps addrs/ total τ`, time τa, Total pre-attack Total post-attack Attack addrs Attack addrs

Attack Type s grp t addrs invest round new tried new tried new tried Wins new tried Wins
Infra (Worstcase) 32 256 8192 10 h 43 m 16384 4090 16384 4096 15871 3404 98% 16064 3501 87%
Infra (Transplant) 20 256 5120 1 hr 27 m 16380 278 16383 3087 14974 2947 82% 15040 2868 77%
Infra (Transplant) 20 256 5120 2 hr 27 m 16380 278 16383 3088 14920 2966 78% 15040 2868 87%
Infra (Transplant) 20 256 5120 4 hr 27 m 16380 278 16384 3088 14819 2972 86% 15040 2868 91%
Infra (Live) 20 256 5120 1 hr 27 m 16381 346 16384 3116 14341 2942 84% 15040 2868 75%
Bots (Worstcase) 2300 2 4600 5 h 26 m 16080 4093 16384 4096 16383 4015 100% 16384 4048 96%
Bots (Transplant) 200 1 200 1 hr 74 s 16380 278 16384 448 16375 200 60% 16384 200 11%
Bots (Transplant) 400 1 400 1 hr 90 s 16380 278 16384 648 16384 400 88% 16384 400 34%
Bots (Transplant) 400 1 400 4 hr 90 s 16380 278 16384 650 16383 400 84% 16384 400 61%
Bots (Transplant) 600 1 600 1 hr 209 s 16380 278 16384 848 16384 600 96% 16384 600 47%
Bots (Live) 400 1 400 1 hr 90 s 16380 298 16384 698 16384 400 84% 16384 400 28%

Table 2: Summary of our experiments.

completely full of legitimate addresses with fresh times-
tamps. To set up the initial condition, we run our at-
tack for no longer than one hour on a freshly-born vic-
tim node, filling tried and new with IP addresses from
251.0.0.0/8, 253.0.0.0/8 and 254.0.0.0/8, which we des-
ignate as “legitimate addresses”; these addresses are no
older than one hour when the attack starts. We then
restart the victim and commence attacking it.

2. Transplant case. In our transplant experiments, we
copied the tried and new tables from one of our five
live bitcoin nodes on 8/2/2015, installed them in a fresh
victim with a different public IP address, restarted the
victim, waited for it to establish eight outgoing connec-
tions, and then commenced attacking. This allowed us to
try various attacks with a consistent initial condition.

3. Live case. Finally, on 2/17/2015 and 2/18/2015
we attacked our live bitcoin nodes while they were con-
nected to the public bitcoin network; at this point our
nodes had been online for 52 or 53 days.

Results (Table 2). Results are in Table 2. The first
five columns summarize attacker resources (the number
of groups s, addresses per group t, time invested in the
attack τ`, and length of a round τa per Sections 3-4). The
next two columns present the initial condition: the num-
ber of addresses in tried and new prior to the attack.
The following four columns give the size of tried and
new, and the number of attacker addresses they store, at
the end of the attack (when the victim first restarts). The
wins columns counts the fraction of times our attack suc-
ceeds after restarting the victim 50 times.

The final three columns give predictions from Sec-
tions 3.3, 4. The attack addrs columns give the expected
number of addresses in new (Appendix B) and tried.
For tried, we assume that the attacker runs his attack
for enough rounds so that the expected number of ad-
dresses in tried is governed by equation (4) for the bot-
net, and (9) multiplied by (16) for the infrastructure at-
tack. The final column predicts success per Section 3.3
using experimental values of τa, τ`, f , f ′.

Observations. Our results indicate the following:

1. Success in worst case. Our experiments confirm that
an infrastructure attack with 32 groups of size /24 (8192
attack addresses total) succeeds in the worst case with
very high probability. We also confirm that botnets are
superior to infrastructure attacks; 4600 bots had 100%
success even with a worst-case initial condition.

2. Accuracy of predictions. Almost all of our attacks
had an experimental success rate that was higher than
the predicted success rate. To explain this, recall that our
predictions from Section 3.3 assume that legitimate ad-
dresses are exactly τ` old (where τ` is the time invested
in the attack); in practice, legitimate addresses are likely
to be even older, especially when we work with tried

tables of real nodes (Table 1). Less importantly, our pre-
dictions also assume that adversarial addresses are ex-
actly τa old; in practice, an adversarial address inserted
at the end of a round could be even younger. Thus, Sec-
tion 3.3’s predictions are a lower bound on the success
rate.

Our experimental botnet attacks were dramatically
more successful than their predictions (e.g., 88% actual
vs. 34% predicted), most likely because the addresses
initially in tried were already very stale prior to the at-
tack (Table 1). Our infrastructure attacks were also more
successful then their predictions, but here the difference
was much less dramatic. To explain this, we look to the
new table. While our success-rate predictions assume
that new is completely overwritten, our infrastructure at-
tacks failed to completely overwrite the new table;9 thus,
we have some extra failures because the victim made out-
going connections to addresses in new.

Finally, note that we decided our attack failed even if
the victim tried to connect to a legitimate address that
was offline. With high churn rates (per Table 1), our suc-
cess rates could be even higher than that in Table 2.

3. Success in a ‘typical’ case. Our attacks are suc-
cessful with even fewer addresses when we test them on
our live nodes, or on tables taken from those live nodes.

9The new table holds 16384 addresses and from 6th last column of
Table 2 we see the new is not full for our infrastructure attacks. Indeed,
we predict this in Appendix B.

11

Most strikingly, a small botnet of 400 bots succeeds with
very high probability; while this botnet completely over-
writes new, it fills only 400/650 = 62% of tried, and
still manages to win with more than 80% probability.

7 Countermeasures

We have shown how an attacker with enough IP ad-
dresses and time can eclipse any target victim, regardless
of the state of the victim’s tried and new tables. We
now present countermeasures that make eclipse attacks
more difficult. Our countermeasures are inspired by bot-
net architectures (Section 8), and designed to be faithful
to bitcoin’s network architecture.

The following five countermeasures ensure that: (1) If
the victim has h legitimate addresses in tried before the
attack, and a p-fraction of them accept incoming connec-
tions during the attack when the victim restarts, then even
an attacker with an unbounded number of addresses can-
not eclipse the victim with probability exceeding equa-
tion (10). (2) If the victim’s oldest outgoing connection is
to a legitimate peer before the attack, then the eclipse at-
tack fails if that peer accepts incoming connections when
the victim restarts.
1. Deterministic random eviction. Replace bitcoin
eviction as follows: just as each address deterministically
hashes to a single bucket in tried and new (Section 2.2),
an address also deterministically hashes to a single slot
in that bucket. This way, an attacker cannot increase the
number of addresses stored by repeatedly inserting the
same address in multiple rounds (Section 4.1). Instead,
addresses stored in tried are given by the ‘random evic-
tion’ curves in Figures 3, 5, reducing the attack addresses
stored in tried.
2. Random selection. Our attacks also exploit
the heavy bias towards forming outgoing connections
to addresses with fresh timestamps, so that an attacker
that owns only a small fraction f = 30% of the victim’s
tried table can increase its success probability (to say
50%) by increasing τ`, the time it invests in the attack
(Section 3.3). We can eliminate this advantage for the
attacker if addresses are selected at random from tried

and new; this way, a success rate of 50% always requires
the adversary to fill 8√0.5 = 91.7% of tried, which re-
quires 40 groups in an infrastructure attack, or about
3680 peers in a botnet attack. Combining this with deter-
ministic random eviction, the figure jumps to 10194 bots
for 50% success probability.

These countermeasures harden the network, but still
allow an attacker with enough addresses to overwrite all
of tried. The next countermeasure remedies this:
3. Test before evict. Before storing an address in its
(deterministically-chosen) slot in a bucket in tried, first

check if there is an older address stored in that slot. If
so, briefly attempt to connect to the older address, and
if connection is successful, then the older address is not
evicted from the tried table; the new address is stored
in tried only if the connection fails.

We analyze these three countermeasures. Suppose that
there are h legitimate addresses in the tried table prior
to the attack, and model network churn by supposing
that each of the h legitimate addresses in tried is live
(i.e., accepts incoming connections) independently with
probability p. With test-before-evict, the adversary can-
not evict p×h legitimate addresses (in expectation) from
tried, regardless of the number of distinct addresses it
controls. Thus, even if the rest of tried is full of adver-
sarial addresses, the probability of eclipsing the victim is
bounded to about

Pr[eclipse] = f 8 <
(

1− p×h
64×64

)8
(10)

This is in stark contrast to today’s protocol, where at-
tackers with enough addresses have unbounded success
probability even if tried is full of legitimate addresses.

We perform Monte-Carlo simulations assuming churn
p, h legitimate addresses initially stored in tried, and
a botnet inserting a addresses into tried via unsolicited
incoming connections. The area below each curve in Fig-
ure 8 is the number of bots a that can eclipse a victim
with probability at least 50%, given that there are initially
h legitimate addresses in tried. With test-before-evict,
the curves plateau horizontally at h= 4096(1− 8√0.5)/p;
as long as h is greater than this quantity, even a botnet
with an infinite number of addresses has success proba-
bility bounded by 50%. Importantly, the plateau is ab-
sent without test-before-evict; a botnet with enough ad-
dresses can eclipse a victim regardless of the number of
legitimate addresses h initially in tried.

There is one problem, however. Our bitcoin nodes saw
high churn rates (Table 1). With a p = 28% churn rate,
for example, bounding the adversary’s success probabil-
ity to 10% requires about h = 3700 addresses in tried;
our nodes had h < 400. Our next countermeasure thus
adds more legitimate addresses to tried:

4. Feeler Connections. Add an outgoing connection
that establish short-lived test connections to randomly-
selected addresses in new. If connection succeeds, the
address is evicted from new and inserted into tried; oth-
erwise, the address is evicted from new.

Feeler connections clean trash out of new while in-
creasing the number of fresh address in tried that are
likely to be online when a node restarts. Our fifth coun-
termeasure is orthogonal to those above:

5. Anchor connections. Inspired by Tor entry guard
rotation rates [33], we add two connections that persist

12

Figure 8: The area below each curve corresponds to a
number of bots a that can eclipse a victim with probabil-
ity at least 50%, given that the victim initially has h legit-
imate addresses in tried. We show one curve per churn
rate p. (Top) With test before evict. (Bottom) Without.

between restarts. Thus, we add an anchor table, record-
ing addresses of current outgoing connections and the
time of first connection to each address. Upon restart,
the node dedicates two extra outgoing connections to the
oldest anchor addresses that accept incoming connec-
tions. Now, in addition to defeating our other counter-
measures, a successful attacker must also disrupt anchor
connections; eclipse attacks fail if the victim connects to
an anchor address not controlled by the attacker.

Apart from these five countermeasures, a few other
ideas can raise the bar for eclipse attacks:
6. More buckets. Among the most obvious coun-
termeasure is to increase the size of the tried and new

tables. Suppose we doubled the number of buckets in
the tried table. If we consider the infrastructure attack,
the buckets filled by s groups jumps from (1−e−

4s
64) (per

equation (9) to (1− e−
4s

128). Thus, an infrastructure at-
tacker needs double the number of groups in order to ex-
pect to fill the same fraction of tried. Similarly, a botnet
needs to double the number of bots. Importantly, how-
ever, this countermeasure is helpful only when tried

already contains many legitimate addresses, so that at-
tacker owns a smaller fraction of the addresses in tried.
However, if tried is mostly empty (or contains mostly
stale addresses for nodes that are no longer online), the
attacker will still own a large fraction of the addresses
in tried, even though the number of tried buckets
has increased. Thus, this countermeasure should also
be accompanied by another countermeasure (e.g., feeler
connections) that increases the number of legitimate ad-
dresses stored in tried.
7. More outgoing connections. Figure 7 indicates

our test bitcoin nodes had at least 65 connections slots
available, and [17] indicates that 80% of bitcoin peers
allow at least 40 incoming connections. Thus, we can
require nodes to make a few additional outgoing con-
nections without risking that the network will run out of
connection capacity. Indeed, recent measurements [51]
indicate that certain nodes (e.g., mining-pool gateways)
do this already. For example, using twelve outgoing con-
nections instead of eight (in addition to the feeler connec-
tion and two anchor connections), decreases the attack’s
success probability from f 8 to f 12; to achieve 50% suc-
cess probability the infrastructure attacker now needs 46
groups, and the botnet needs 11796 bots. While this im-
provement is not as dramatic Countermeasures 1-5, it is
still a simple way to raise the bar for eclipse attacks.

8. Ban unsolicited ADDR messages. A node could
choose not to accept large unsolicited ADDR messages
(with > 10 addresses) from incoming peers, and only so-
licit ADDR messages from outgoing connections when its
new table is too empty. This prevents adversarial incom-
ing connections from flooding a victim’s new table with
trash addresses. We argue that this change is not harmful,
since even in the current network, there is no shortage of
address in the new table (Section 5). To make this more
concrete, note that a node request ADDR messages upon
establishing an outgoing connection. The peer responds
with n randomly selected addresses from its tried and
new tables, where n is a random number between x and
2500 and x is 23% of the addresses the peer has stored.
If each peer sends, say, about n = 1700 addresses, then
new is already 8n/16384 = 83% full the moment that the
bitcoin node finishing establishing outgoing connections.

9. Diversify incoming connections. Today, a bit-
coin node can have all of its incoming connections come
from the same IP address, making it far too easy for a sin-
gle computer to monopolize a victim’s incoming connec-
tions during an eclipse attack or connection-starvation at-
tack [32]. We suggest a node accept only a limited num-
ber of connections from the same IP address.

10. Anomaly detection. Our attack has several spe-
cific “signatures” that make it detectable including: (1) a
flurry of short-lived incoming TCP connections from di-
verse IP addresses, that send (2) large ADDR messages (3)
containing “trash” IP addresses. An attacker that sud-
denly connects a large number of nodes to the bitcoin
network could also be detected, as could one that uses
eclipsing per Section 1.1 to dramatically decrease the
network’s mining power. Thus, monitoring and anomaly
detection systems that look for this behavior are also be
useful; at the very least, they would force an eclipse at-
tacker to attack at low rate, or to waste resources on over-
writing new (instead of using “trash” IP addresses).

Status of our countermeasures. We disclosed our

13

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

5

0

0.2

0.4

0.6

0.8

1

Number of Addresses Inserted

Pr
[E

cl
ip

se
]

Figure 9: Probability of eclipsing a node vs the number
of addresses (bots) t for bitcoind v0.10.1 (with Counter-
measures 1,2 and 6) when tried is initially full of legit-
imate addresses per equation (11).

results to the bitcoin core developers in 02/2015. They
deployed Countermeasures 1, 2, and 6 in the bitcoind
v0.10.1 release, which now uses deterministic random
eviction, random selection, and scales up the number of
buckets in tried and new by a factor of four. To illus-
trate the efficacy of this, consider the worst-case scenario
for the attacker where tried is completely full of legiti-
mate addresses. We use Lemma A.1 to estimate the suc-
cess rate of a botnet with t IP addresses as

Pr[Eclipse]≈
(
1− (16383

16384)
t)8

(11)

Plotting (11) in Figure 9, we see that this botnet requires
163K addresses for a 50% success rate, and 284K ad-
dress for a 90% success rate. This is good news, but
we caution that ensuring that tried is full of legitimate
address is still a challenge (Section 5), especially since
there may be fewer than 16384 public-IP nodes in the
bitcoin network at a given time. Countermeasures 3 and
4 are designed to deal with this, and so we have also de-
veloped a patch with these two countermeasures; see [40]
for our implementation and its documentation.

8 Related Work

The bitcoin peer-to-peer (p2p) network. Recent work
considers how bitcoin’s network can delay or prevent
block propagation [31] or be used to deanonymize bit-
coin users [16, 17, 48]. These works discuss aspects of
bitcoin’s networking protocol, with [16] providing an ex-
cellent description of ADDR message propagation; we fo-
cus instead on the structure of the tried and new tables,
timestamps and their impact on address selection (Sec-
tion 2). [17] shows that nodes connecting over Tor can
be eclipsed by a Tor exit node that manipulates both bit-
coin and Tor. Other work has mapped bitcoin peers to au-
tonomous systems [38], geolocated peers and measured
churn [34], and used side channels to learn the bitcoin
network topology [16, 51].

p2p and botnet architectures. There has been
extensive research on eclipse attacks [27, 61, 62] in

structured p2p networks built upon distributed hash ta-
bles (DHTs); see [64] for a survey. Many proposals
defend against eclipse attacks by adding more struc-
ture; [61] constrains peer degree, while others use con-
straints based on distance metrics like latency [42] or
DHT identifiers [13]. Bitcoin, by contrast, uses an un-
structured network. While we have focused on exploiting
specific quirks in bitcoin’s existing network, other works
e.g., [11, 15, 21, 44] design new unstructured networks
that are robust to Byzantine attacks. [44] blacklists mis-
behaving peers. Puppetcast’s [15] centralized solution is
based on public-key infrastructure [15], which is not ap-
propriate for bitcoin. Brahms [21] is fully decentralized,
and instead constrains the rate at which peers exchange
network information—a useful idea that is a significant
departure from bitcoin’s current approach. Meanwhile,
our goals are also more modest than those in these works;
rather than requiring that each node is equally likely to
be sampled by an honest node, we just want to limit
eclipse attacks on initially well-connected nodes. Thus,
our countermeasures are inspired by botnet architectures,
which share this same goal. Rossow et al. [59] finds that
many botnets, like bitcoin, use unstructured peer-to-peer
networks and gossip (i.e., ADDR messages), and describes
how botnets defend against attacks that flood local ad-
dress tables with bogus information. The Sality botnet
refuses to evict “high-reputation” addresses; our anchor
countermeasure is similar (Section 7). Storm uses test-
before-evict [30], which we have also recommended for
bitcoin. Zeus [12] disallows connections from multiple
IP in the same /20, and regularly clean tables by testing
if peers are online; our feeler connections are similar.

9 Conclusion

We presented an eclipse attack on bitcoin’s peer-to-peer
network that undermines bitcoin’s core security guaran-
tees, allowing attacks on the mining and consensus sys-
tem, including N-confirmation double spending and ad-
versarial forks in the blockchain. Our attack is for nodes
with public IPs. We developed mathematical models of
our attack, and validated them with Monte Carlo sim-
ulations, measurements and experiments. We demon-
strated the practically of our attack by performing it on
our own live bitcoin nodes, finding that an attacker with
32 distinct /24 IP address blocks, or a 4600-node botnet,
can eclipse a victim with over 85% probability in the at-
tacker’s worst case. Moreover, even a 400-node botnet
sufficed to attack our own live bitcoin nodes. Finally,
we proposed countermeasures that make eclipse attacks
more difficult while still preserving bitcoin’s openness
and decentralization; several of these were incorporated
in a recent bitcoin software upgrade.

14

Acknowledgements

We thank Foteini Baldimtsi, Wil Koch, and the USENIX
Security reviewers for comments on this paper, various
bitcoin users for donating their peers files, and the bitcoin
core devs for discussions and for implementing Counter-
measures 1,2,6. E.H., A.K., S.G. were supported in part
by NSF award 1350733, and A.Z. by ISF Grants 616/13,
1773/13, and the Israel Smart Grid (ISG) Consortium.

References
[1] Amazon web services elastic ip. http://aws.amazon.com/

ec2/faqs/#elastic-ip. Accessed: 2014-06-18.

[2] Bitcoin: Common vulnerabilities and exposures. https:

//en.bitcoin.it/wiki/Common_Vulnerabilities_and_

Exposures. Accessed: 2014-02-11.

[3] Bitcoin wiki: Double-spending. https://en.bitcoin.it/

wiki/Double-spending. Accessed: 2014-02-09.

[4] Bitnode.io snapshot of reachable nodes. https://getaddr.

bitnodes.io/nodes/. Accessed: 2014-02-11.

[5] Bitpay: What is transaction speed? https:

//support.bitpay.com/hc/en-us/articles/

202943915-What-is-Transaction-Speed-. Accessed:
2014-02-09.

[6] Bug bounty requested: 10 btc for huge dos bug in all current
bitcoin clients. Bitcoin Forum. https://bitcointalk.org/
index.php?topic=944369.msg10376763#msg10376763.
Accessed: 2014-06-17.

[7] CVE-2013-5700: Remote p2p crash via bloom filters. https:

//en.bitcoin.it/wiki/Common_Vulnerabilities_and_

Exposures. Accessed: 2014-02-11.

[8] Microsoft azure ip address pricing. http://

azure.microsoft.com/en-us/pricing/details/

ip-addresses/. Accessed: 2014-06-18.

[9] Rackspace: Requesting additional ipv4 ad-
dresses for cloud servers. http://www.

rackspace.com/knowledge_center/article/

requesting-additional-ipv4-addresses-for-cloud-servers.
Accessed: 2014-06-18.

[10] Ghash.io and double-spending against betcoin dice, October 30
2013.

[11] ANCEAUME, E., BUSNEL, Y., AND GAMBS, S. On the power
of the adversary to solve the node sampling problem. In Transac-
tions on Large-Scale Data-and Knowledge-Centered Systems XI.
Springer, 2013, pp. 102–126.

[12] ANDRIESSE, D., AND BOS, H. An analysis of the zeus peer-to-
peer protocol, April 2014.

[13] AWERBUCH, B., AND SCHEIDELER, C. Robust random number
generation for peer-to-peer systems. In Principles of Distributed
Systems. Springer, 2006, pp. 275–289.

[14] BAHACK, L. Theoretical bitcoin attacks with less than half of
the computational power (draft). arXiv preprint arXiv:1312.7013
(2013).

[15] BAKKER, A., AND VAN STEEN, M. Puppetcast: A secure peer
sampling protocol. In European Conference on Computer Net-
work Defense (EC2ND) (2008), IEEE, pp. 3–10.

[16] BIRYUKOV, A., KHOVRATOVICH, D., AND PUSTOGAROV, I.
Deanonymisation of clients in Bitcoin P2P network. In Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (2014), ACM, pp. 15–29.

[17] BIRYUKOV, A., AND PUSTOGAROV, I. Bitcoin over tor isn’t a
good idea. arXiv preprint arXiv:1410.6079 (2014).

[18] BITCOIN WIKI. Confirmation. https://en.bitcoin.it/

wiki/Confirmation, February 2015.

[19] BITCOIN WISDOM. Bitcoin difficulty and hash rate chart.
https://bitcoinwisdom.com/bitcoin/difficulty,
February 2015.

[20] BLOCKCHAIN.IO. Average transaction confirma-
tion time. https://blockchain.info/charts/

avg-confirmation-time, February 2015.

[21] BORTNIKOV, E., GUREVICH, M., KEIDAR, I., KLIOT, G., AND
SHRAER, A. Brahms: Byzantine resilient random membership
sampling. Computer Networks 53, 13 (2009), 2340–2359.

[22] BRANDS, S. Untraceable off-line cash in wallets with observers
(extended abstract). In CRYPTO (1993).

[23] CAIDA. AS to Organization Mapping Dataset, July 2014.

[24] CAIDA. Routeviews prefix to AS Mappings Dataset for IPv4
and IPv6, July 2014.

[25] CAMENISCH, J., HOHENBERGER, S., AND LYSYANSKAYA, A.
Compact e-cash. In EUROCRYPT (2005).

[26] CARNABOTNET. Internet census 2012. http:

//internetcensus2012.bitbucket.org/paper.html,
2012.

[27] CASTRO, M., DRUSCHEL, P., GANESH, A., ROWSTRON, A.,
AND WALLACH, D. S. Secure routing for structured peer-to-
peer overlay networks. ACM SIGOPS Operating Systems Review
36, SI (2002), 299–314.

[28] CHAUM, D. Blind signature system. In CRYPTO (1983).

[29] COURTOIS, N. T., AND BAHACK, L. On subversive miner
strategies and block withholding attack in bitcoin digital cur-
rency. arXiv preprint arXiv:1402.1718 (2014).

[30] DAVIS, C. R., FERNANDEZ, J. M., NEVILLE, S., AND
MCHUGH, J. Sybil attacks as a mitigation strategy against the
storm botnet. In 3rd International Conference on Malicious and
Unwanted Software, 2008. (2008), IEEE, pp. 32–40.

[31] DECKER, C., AND WATTENHOFER, R. Information propagation
in the bitcoin network. In IEEE Thirteenth International Confer-
ence on Peer-to-Peer Computing (P2P) (2013), IEEE, pp. 1–10.

[32] DILLON, J. Bitcoin-development mailinglist: Protecting bitcoin
against network-wide dos attack. http://sourceforge.net/
p/bitcoin/mailman/message/31168096/, 2013. Accessed:
2014-02-11.

[33] DINGLEDINE, R., HOPPER, N., KADIANAKIS, G., AND MATH-
EWSON, N. One fast guard for life (or 9 months). In 7th Work-
shop on Hot Topics in Privacy Enhancing Technologies (HotPETs
2014) (2014).

[34] DONET, J. A. D., PÉREZ-SOLA, C., AND HERRERA-
JOANCOMARTÍ, J. The bitcoin p2p network. In Financial Cryp-
tography and Data Security. Springer, 2014, pp. 87–102.

[35] DURUMERIC, Z., WUSTROW, E., AND HALDERMAN, J. A.
ZMap: Fast Internet-wide scanning and its security applications.
In Proceedings of the 22nd USENIX Security Symposium (Aug.
2013).

[36] EYAL, I. The miner’s dilemma. arXiv preprint arXiv:1411.7099
(2014).

[37] EYAL, I., AND SIRER, E. G. Majority is not enough: Bitcoin
mining is vulnerable. In Financial Cryptography and Data Secu-
rity. Springer, 2014, pp. 436–454.

[38] FELD, S., SCHÖNFELD, M., AND WERNER, M. Analyzing the
deployment of bitcoin’s p2p network under an as-level perspec-
tive. Procedia Computer Science 32 (2014), 1121–1126.

15

http://aws.amazon.com/ec2/faqs/#elastic-ip
http://aws.amazon.com/ec2/faqs/#elastic-ip
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures
https://en.bitcoin.it/wiki/Double-spending
https://en.bitcoin.it/wiki/Double-spending
https://getaddr.bitnodes.io/nodes/
https://getaddr.bitnodes.io/nodes/
https://support.bitpay.com/hc/en-us/articles/202943915-What-is-Transaction-Speed-
https://support.bitpay.com/hc/en-us/articles/202943915-What-is-Transaction-Speed-
https://support.bitpay.com/hc/en-us/articles/202943915-What-is-Transaction-Speed-
https://bitcointalk.org/index.php?topic=944369.msg10376763#msg10376763
https://bitcointalk.org/index.php?topic=944369.msg10376763#msg10376763
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures
http://azure.microsoft.com/en-us/pricing/details/ip-addresses/
http://azure.microsoft.com/en-us/pricing/details/ip-addresses/
http://azure.microsoft.com/en-us/pricing/details/ip-addresses/
http://www.rackspace.com/knowledge_center/article/requesting-additional-ipv4-addresses-for-cloud-servers
http://www.rackspace.com/knowledge_center/article/requesting-additional-ipv4-addresses-for-cloud-servers
http://www.rackspace.com/knowledge_center/article/requesting-additional-ipv4-addresses-for-cloud-servers
https://en.bitcoin.it/wiki/Confirmation
https://en.bitcoin.it/wiki/Confirmation
https://bitcoinwisdom.com/bitcoin/difficulty
https://blockchain.info/charts/avg-confirmation-time
https://blockchain.info/charts/avg-confirmation-time
http://internetcensus2012.bitbucket.org/paper.html
http://internetcensus2012.bitbucket.org/paper.html
http://sourceforge.net/p/bitcoin/mailman/message/31168096/
http://sourceforge.net/p/bitcoin/mailman/message/31168096/

[39] FINNEY, H. Bitcoin talk: Finney attack. https:

//bitcointalk.org/index.php?topic=3441.msg48384#

msg48384, 2011. Accessed: 2014-02-12.

[40] HEILMAN, E. Bitcoin: Added test-before-evict discipline in ad-
drman, feeler connections. https://github.com/bitcoin/

bitcoin/pull/6355.

[41] HEILMAN, E. How many ip addresses
can a dns query return? http://

ethanheilman.tumblr.com/post/110920218915/

how-many-ip-addresses-can-a-dns-query-return,
2015. Accessed: 2014-02-13.

[42] HILDRUM, K., AND KUBIATOWICZ, J. Asymptotically efficient
approaches to fault-tolerance in peer-to-peer networks. In Dis-
tributed Computing. Springer, 2003, pp. 321–336.

[43] IANA. Iana ipv4 address space registry. http:

//www.iana.org/assignments/ipv4-address-space/

ipv4-address-space.xhtml, January 2015.

[44] JESI, G. P., MONTRESOR, A., AND VAN STEEN, M. Secure
peer sampling. Computer Networks 54, 12 (2010), 2086–2098.

[45] JOHNSON, B., LASZKA, A., GROSSKLAGS, J., VASEK, M.,
AND MOORE, T. Game-theoretic analysis of ddos attacks against
bitcoin mining pools. In Financial Cryptography and Data Secu-
rity. Springer, 2014, pp. 72–86.

[46] KARAME, G., ANDROULAKI, E., AND CAPKUN, S. Two bit-
coins at the price of one? double-spending attacks on fast pay-
ments in bitcoin. IACR Cryptology ePrint Archive 2012 (2012),
248.

[47] KING, L. Bitcoin hit by ’massive’ ddos at-
tack as tensions rise. Forbes http: // www.

forbes. com/ sites/ leoking/ 2014/ 02/ 12/

bitcoin-hit-by-massive-ddos-attack-as-tensions-rise/

(December 2 2014).

[48] KOSHY, P., KOSHY, D., AND MCDANIEL, P. An analysis of
anonymity in bitcoin using p2p network traffic. In Financial
Cryptography and Data Security. 2014.

[49] KROLL, J. A., DAVEY, I. C., AND FELTEN, E. W. The eco-
nomics of bitcoin mining, or bitcoin in the presence of adver-
saries. In Proceedings of WEIS (2013), vol. 2013.

[50] LASZKA, A., JOHNSON, B., AND GROSSKLAGS, J. When bit-
coin mining pools run dry. 2nd Workshop on Bitcoin Research
(BITCOIN) (2015).

[51] MILLER, A., LITTON, J., PACHULSKI, A., GUPTA, N., LEVIN,
D., SPRING, N., AND BHATTACHARJEE, B. Discovering bit-
coin’s network topology and influential nodes. Tech. rep., Uni-
versity of Maryland, 2015.

[52] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system.

[53] OPENSSL. TLS heartbeat read overrun (CVE-2014-0160).
https://www.openssl.org/news/secadv_20140407.txt,
April 7 2014.

[54] PLOHMANN, D., AND GERHARDS-PADILLA, E. Case study of
the miner botnet. In Cyber Conflict (CYCON), 2012 4th Interna-
tional Conference on (2012), IEEE, pp. 1–16.

[55] RIPE. Ripestat. https://stat.ripe.net/data/

announced-prefixes, October 2014.

[56] RIPE. Latest delegations. ftp://ftp.ripe.net/pub/stats/
ripencc/delegated-ripencc-extended-latest, 2015.

[57] ROADTRAIN. Bitcoin-talk: Ghash.io and double-spending
against betcoin dice. https://bitcointalk.org/index.

php?topic=321630.msg3445371#msg3445371, 2013. Ac-
cessed: 2014-02-14.

[58] ROSENFELD, M. Analysis of hashrate-based double spending.
arXiv preprint arXiv:1402.2009 (2014).

[59] ROSSOW, C., ANDRIESSE, D., WERNER, T., STONE-GROSS,
B., PLOHMANN, D., DIETRICH, C. J., AND BOS, H. Sok:
P2pwned-modeling and evaluating the resilience of peer-to-peer
botnets. In IEEE Symposium on Security and Privacy (2013),
IEEE, pp. 97–111.

[60] SHOMER, A. On the phase space of block-hiding strategies.
IACR Cryptology ePrint Archive 2014 (2014), 139.

[61] SINGH, A., NGAN, T.-W. J., DRUSCHEL, P., AND WALLACH,
D. S. Eclipse attacks on overlay networks: Threats and defenses.
In In IEEE INFOCOM (2006).

[62] SIT, E., AND MORRIS, R. Security considerations for peer-to-
peer distributed hash tables. In Peer-to-Peer Systems. Springer,
2002, pp. 261–269.

[63] STOCK, B., GOBEL, J., ENGELBERTH, M., FREILING, F. C.,
AND HOLZ, T. Walowdac: Analysis of a peer-to-peer botnet. In
European Conference on Computer Network Defense (EC2ND)
(2009), IEEE, pp. 13–20.

[64] URDANETA, G., PIERRE, G., AND STEEN, M. V. A survey of
dht security techniques. ACM Computing Surveys (CSUR) 43, 2
(2011), 8.

[65] VASEK, M., THORNTON, M., AND MOORE, T. Empirical anal-
ysis of denial-of-service attacks in the bitcoin ecosystem. In Fi-
nancial Cryptography and Data Security. Springer, 2014, pp. 57–
71.

A A Useful Lemma

Lemma A.1. If k items are randomly and independently
inserted into n buckets, and X is a random variable
counting the number of non-empty buckets, then

E[X] = n
(

1− (n−1
n)k

)
≈ n(1− e−

k
n) (12)

Proof. Let Xi = 1 if bucket i is non-empty, and Xi = 0
otherwise. The probability that the bucket i is empty after
the first item is inserted is (n−1

n). After inserting k items

Pr[Xi = 1] = 1−
(n−1

n

)k

It follows that

E[X] =
n

∑
i=1

E[Xi] =
n

∑
i=1

Pr[Xi = 1] = n(1− (n−1
n)k)

(12) follows since (n−1
n)≈ e−1/n for n� 1.

B Overwriting the New Table

How should the attacker send ADDR messages that over-
write the new table with “trash” IP addresses? Our
“trash” is from the unallocated Class A IPv4 address
block 252.0.0.0/8, designated by IANA as “reserved for
future use” [43]; any connections these addresses will
fail, forcing the victim to choose an address from tried.
Next, recall (Section 2.2) that the pair (group, source

16

https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384
https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384
https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384
https://github.com/bitcoin/bitcoin/pull/6355
https://github.com/bitcoin/bitcoin/pull/6355
http://ethanheilman.tumblr.com/post/110920218915/how-many-ip-addresses-can-a-dns-query-return
http://ethanheilman.tumblr.com/post/110920218915/how-many-ip-addresses-can-a-dns-query-return
http://ethanheilman.tumblr.com/post/110920218915/how-many-ip-addresses-can-a-dns-query-return
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
http://www.forbes.com/sites/leoking/2014/02/12/bitcoin -hit-by-massive-ddos-attack-as-tensions-rise/
http://www.forbes.com/sites/leoking/2014/02/12/bitcoin -hit-by-massive-ddos-attack-as-tensions-rise/
http://www.forbes.com/sites/leoking/2014/02/12/bitcoin -hit-by-massive-ddos-attack-as-tensions-rise/
https://www.openssl.org/news/secadv_20140407.txt
https://stat.ripe.net/data/announced-prefixes
https://stat.ripe.net/data/announced-prefixes
ftp://ftp.ripe.net/pub/stats/ripencc/delegated-ripencc-extended-latest
ftp://ftp.ripe.net/pub/stats/ripencc/delegated-ripencc-extended-latest
https://bitcointalk.org/index.php?topic=321630.msg3445371#msg3445371
https://bitcointalk.org/index.php?topic=321630.msg3445371#msg3445371

Figure 10: E[N] vs s (the number of source groups)
for different choices of g (number of groups per source
group) when overwriting the new table per equation (13).

group) determines the bucket in which an address in an
ADDR message is stored. Thus, if the attacker controls
nodes in s different groups, then s is the number of source
groups. We suppose that nodes in each source group can
push ADDR messages containing addresses from g distinct
groups; the “trash” 252.0.0.0/8 address block give an up-
per bound on g of 28 = 256. Each group contains a dis-
tinct addresses. How large should s, g, and a be so that
the new table is overwritten by “trash” addresses?

B.1 Infrastructure strategy

In an infrastructure attack, the number of source groups s
is constrained, and the number of groups g is essentially
unconstrained. By Lemma A.1, the expected number of
buckets filled by a s source groups is

E[N] = 256(1− (255
256)

32s) (13)

We expect to fill ≈ 251 of 256 new buckets with s = 32.
Each (group, source group) pair maps to a unique

bucket in new, and each bucket in new can hold 64 ad-
dresses. Bitcoin eviction is used, and we suppose each
new bucket is completely full of legitimate addresses that
are older than all the addresses inserted by the adversary
via ADDR messages. Since all a addresses in a particu-
lar (group, source group) pair map to a single bucket, it
follows that the number of addresses that actually stored
in that bucket is given by E[Ya] in the recurrence rela-
tion of equations of (5)-(6). With a = 125 addresses,
the adversary expects to overwrite E[Ya] = 63.8 of the
64 legitimate addresses in the bucket. We thus require
each source group to have 32 peers, and each peer to
send ADDR messages with 8 distinct groups of a = 125
addresses. Thus, there are g = 32× 8 = 256 groups per
source group, which is exactly the maximum number of
groups available in our trash IP address block. Each peer
sends exactly one ADDR message with 8×125= 1000 ad-
dress, for a total of 256×125× s distinct addresses sent
by all peers. (There are 224 addresses in the 252.0.0.0/8
block, so all these addresses are distinct if s < 524.)

B.2 Botnet strategy
In a botnet attack, each of the attacker’s t nodes is in
a distinct source group. For s = t > 200, which is the
case for all our botnet attacks, equation (13) shows that
the number of source groups s = t is essentially uncon-
strained. We thus require each peer to send a single
ADDR message containing 1000 addresses with 250 dis-
tinct groups of four addresses each. Since s = t is so
large, we can model this by assuming that each (group,
source group) pair selects a bucket in new uniformly at
random, and inserts 4 addresses into that bucket; thus, the
expected number of addresses inserted per bucket will be
tightly concentrated around

4×E[B(250t, 1
256] = 3.9t

For t > 200, we expect at least 780 address to be inserted
into each bucket. From equations (5) and (6), we find
E[Y780]≈ 64, so that each new bucket is likely to be full.

C Infrastructure Attack on Tried Table

In Section 4.2 we found the distribution of Γ, the num-
ber of non-empty buckets in tried, given that an in-
frastructure attacker has addresses in s distinct groups.
We now determine the expected number of attacker ad-
dresses stored in each tried bucket, given t addresses
per group. To do this, we first find how many distinct ad-
dresses hash to a given a bucket, and then find how many
of these addresses will actually be stored in the bucket.
How many addresses hash to a bucket? Recall that
each group makes 4 uniform random draws of one of 64
possible buckets in tried. Considering a single bucket
i, the probability that a single group hashes to bucket i is

1
α
= 1− (63

64)
4 ≈ 1

16 (14)

If Gi counts the number of distinct groups hashing to
bucket i, then Gi is binomially distributed as Gi ∼
B(s, 1

α
). If Gi = g groups hash to bucket i, and each group

contains t addresses hashing to up to 4 distinct buckets,10

then the number of addresses hashing to bucket i is the
random variable Ai ∼ B(gt, 1

4), with distribution

Pr[Ai = a] =
s

∑
g=0

Pr[B(gt, 1
4) = a]Pr[B(s, 1

α
) = g] (15)

and expected value E[Ai] =
t
4

s
α

. We plot the probabil-
ity distribution of Ai in Figure 11; the distribution has a

10Actually this is an underestimate that assumes that each group
hashes to exactly 4 buckets; in practice a group can maps to Z buck-
ets, where Z is a random variable with range {1,2,3,4}. The random
variable Z − 1 ≈ B(3, 63

64) is has a binomial distribution and E[Z] =
1+ 3 63

64 = 3.95. But an underestimate is fine here, since we need to
know how many attacker addresses are needed to fill a bucket.

17

Figure 11: Distribution of Ai, for different choices of s
(the number of groups) and with t = 256 (addresses per
group), per equation (15).

multi-peaked shape, where the first peak corresponds to
Gi = 1, i.e., a single group hashes to bucket i, the second
peak corresponds to Gi = 2, and so on. Moreover, while
difficult to see in the plot, there is also a non-negligible
probability that Ai = 0, which occurs when Gi = 0.
How many addresses are stored in a bucket? Now
that we know that Ai addresses hash to bucket i, we need
to figure out how many of these addresses will actually be
stored in the bucket. We consider a variety of situations.
1. Initially empty. In the best case for the attacker,
bucket i is initially empty. The expected number of ad-
dresses that end up getting stored in bucket i, given that
at least one group hashes to bucket i is

E[min(64,Ai)|Gi > 0] (16)

This is the quantity of interest, since if no groups map
to bucket i, we cannot fill the bucket by increasing t, the
number of addresses per group; instead we must increase
s, the number of groups.
2. Bitcoin eviction. In the worst-case for the attacker,
we suppose that bucket i is completely full of 64 legiti-
mate addresses. Let Ya be the number of adversarial ad-
dresses actually stored in bucket i, given that the adver-
sary inserted a unique addresses into bucket i; if bitcoin
eviction is used, E[Ya] is given by the recurrence relation
in equations (5)-(6). The expected number of addresses
stored in bucket i, given that at least one group hashes to
bucket i, is

st

∑
a=0

E[Ya]Pr[Ai = a|Gi > 0] (17)

which we can compute numerically by combining the re-
currence for E[Ya] with the distribution of Ai from (15).
3. Random eviction. We once again assume that bucket
i is completely full of legitimate addresses, but now we
assume that each time an address is inserted it evicts a

randomly-selected address. If Ya is defined as above, then
by Lemma A.1

E[Ya] = 64(1− (63
64)

a) (18)

and substituting equation (18) into (17) we get the ex-
pected number of addresses stored in bucket i, given that
at least one group hashes to bucket i.
How full is tried? f is the fraction of tried filled by
by adversarial addresses. The exact value of E[f] is

E[f] =
s

∑
γ=1

st

∑
a=0

E[Ya]Pr[Ai = a|Gi > 0]Pr[Γ = γ]

in the random and bitcoin evictions scenarios, and

E[f] =
s

∑
γ=1

st

∑
a=0

E[min(64,Ai)|Gi > 0]Pr[Ai = a|Gi > 0]Pr[Γ= γ]

in the initially empty scenario. But to keep things simple,
Figure 5 in Section 4 estimates E[f] for each scenario
simply by taking the product of the expected number of
attacker addresses stored per bucket (given that at least
one attacker group maps to that bucket) and the expected
number of non-empty buckets E[Γ] from (9); we verified
numerically that this provides an accurate estimate.

18

	Introduction
	Implications of eclipse attacks

	Bitcoin's Peer-to-Peer Network
	Propagating network information
	Storing network information
	Selecting peers

	The Eclipse Attack
	Populating tried and new
	Restarting the victim
	Selecting outgoing connections
	Monopolizing the eclipsed victim

	How Many Attack Addresses?
	Botnet attack
	Who can launch a botnet attack?

	Infrastructure attack
	Who can launch an infrastructure attack?

	Summary: infrastructure or botnet?

	Measuring Live Bitcoin Nodes
	Experiments
	Countermeasures
	Related Work
	Conclusion
	A Useful Lemma
	Overwriting the New Table
	Infrastructure strategy
	Botnet strategy

	Infrastructure Attack on Tried Table

